Center stable manifolds for quasilinear parabolic pde and conditional stability of nonclassical viscous shock waves

نویسنده

  • Kevin Zumbrun
چکیده

Motivated by the study of conditional stability of traveling waves, we give an elementary H2 center stable manifold construction for quasilinear parabolic PDE, sidestepping apparently delicate regularity issues by the combination of a carefully chosen implicit fixed-point scheme and straightforward time-weighted Hs energy estimates. As an application, we show conditional stability of Laxor undercompressive shock waves of general quasilinear parabolic systems of conservation laws by a pointwise stability analysis on the center stable manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD

Extending our previous work in the strictly parabolic case, we show that a linearly unstable Lax-type viscous shock solution of a general quasilinear hyperbolic–parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1 ∩ H3 perturbations, converging time-asymptotically to a translate of...

متن کامل

Stable and Unstable Manifolds for Quasilinear Parabolic Problems with Fully Nonlinear Dynamical Boundary Conditions

We develop a wellposedness and regularity theory for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Moreover, we construct and investigate stable and unstable local invariant manifolds near a given equilibrium. In a companion paper we treat center, center–stable and center–unstable manifolds for such problems and investigate their stability p...

متن کامل

Nonlinear Stability of Large Amplitude Viscous Shock Waves of a Generalized Hyperbolic{parabolic System Arising in Chemotaxis

Traveling wave (band) behavior driven by chemotaxis was observed experimentally by Adler and was modeled by Keller and Segel. For a quasilinear hyperbolic parabolic system that arises as a non-di®usive limit of the Keller Segel model with nonlinear kinetics, we establish the existence and nonlinear stability of traveling wave solutions with large amplitudes. The numerical simulations are perfor...

متن کامل

Nonclassical multidimensional viscous and inviscid shocks

Extending our earlier work on Lax-type shocks of systems of conservation laws, we establish existence and stability of curved multidimensional shock fronts in the vanishing viscosity limit for general Laxor undercompressive-type shock waves of nonconservative hyperbolic systems with parabolic regularization. The hyperbolic equations may be of variable multiplicity and the parabolic regularizati...

متن کامل

Nonlinear Stability of Shock Waves for Viscous Conservation Laws

where u = u{x,t) E R , the flux f(u) is a smooth n-vector-valued function, and the viscosity B(u) is a smooth n x n matrix. We are interested in the stability of traveling waves, the "viscous shock waves", for (1). It is shown that when the initial data are a perturbation of viscous shock waves, then the solution converges to these viscous shock waves, properly translated in space, in the unifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009